摘要

The microRNA171 (miR171) family is widely distributed and highly conserved in a range of species and plays critical roles in regulating plant growth and development through repressing expression of SCARECROW-LIKE (SCL) transcription factors. However, information on the evolutionary conservation and functional diversification of the miRNA171 family members remains scanty. We reconstructed the phylogenetic relationships among miR171 precursor and mature sequences so as to investigate the extent and degree of evolutionary conservation of miR171 in Arabidopsis thaliana (L.) Heynh. (ath), grape (Vitis vinifera L.) (vvi), poplar (Populus trichocarpa Torr. & A. Gray ex Hook.) (ptc), and rice (Oryza sativa L.) (osa). Despite strong conservation of over 80%, some mature miR171 sequences, such as ptc-miR171j -l, and -m and osa-miR171g, -h, and -i, have undergone critical sequence variation, leading to functional diversification, since they target non-SCL gene transcript(s). Phylogenetic analyses revealed a combination of old ancestral relationships and recent lineage-specific diversification in the miR171 family within the four model plants. The cis-regulatory motifs on the upstream promoter sequences of miR171 genes were highly divergent and shared some similar elements, indicating their possible contribution to the functional variation observed within the miR171 family. This study will buttress our understanding of the functional differentiation of miRNAs and the relationships of miRNA-target pairs based on the evolutionary history of miRNA genes.