摘要

Using sterculia lychnophora seeds as precursors for the first time, fluorescent carbon dots (CDs) were synthesized by simple hydrothermal treatment. The quantum yield of as-synthesized CDs was 6.9% by using quinine sulfate as the reference. The fluorescence of CDs could be effectively quenched by a MnO2 nanosheet based on fluorescence resonance energy transfer (FRET). Ascorbic acid (AA) could reduce MnO2 to Mn2+ and result in the destruction of the MnO2 nanosheets, which could induce the fluorescence recovery of the CDs. In particular, alkaline phosphatase (ALP) could bio-catalyze acid 2-phosphate (AAP) hydrolysis to AA. Here, an efficient fluorescence probe based on a CDs-MnO2 nanosheet for rapid and selective detection of ALP was reported for the first time. Excellent performance for the detection of ALP was observed with high sensitivity and a detection limit of 0.4U/L owing to the low background. The detection of ALP in human serum was conducted with satisfactory results, demonstrating its potential applications in clinical diagnosis.