摘要

Multiresponse parameter design problems have become increasingly important and have received considerable attention from both researchers and practitioners since there are usually several quality characteristics that must be optimized simultaneously in most modern products/processes. This study applies support vector regression (SVR), Taguchi loss function, and the artificial bee colony (ABC) algorithm to develop a six-staged procedure that resolves these common and complicated parameter design problems. SVR is used to model the mathematical relationship between input control factors and output responses, and the ABC algorithm is used to find the optimal control factor settings by searching the well-constructed SVR models in which the Taguchi loss function is applied to evaluate the overall performance of a product/process. The feasibility and effectiveness of the proposed approach are demonstrated via a case study in which the design of a total internal reflection (TIR) lens is optimized while fabricating an MR16 light-emitting diode lamp. Experimental results indicate that the proposed solution procedure can provide highly robust design parameter settings for TIR lenses that can be directly applied in real manufacturing processes. Comparisons with the Taguchi method reveal that the Taguchi method is an undesirable and inappropriate method for resolving multiple-response parameter design problems, while the ABC algorithm can search the solution spaces in continuous domains modeled via SVR instead of in the limited discrete experiment levels, thus finding a more robust design than that obtained by the traditional analysis of variance. Consequently, the proposed integrated approach in this study can be considered feasible and effective and can be popularized as a useful tool for resolving general multiresponse parameter design problems in the real world.

  • 出版日期2014-5

全文