Potential Impacts of Electric Power Production Utilizing Natural Gas, Renewables and Carbon Capture and Sequestration on US Freshwater Resources

作者:Tidwell Vincent C*; Malczynski Leonard A; Kobos Peter H; Klise Geoffrey T; Shuster Erik
来源:Environmental Science & Technology, 2013, 47(15): 8940-8947.
DOI:10.1021/es3052284

摘要

Carbon capture and sequestration (CCS) has important implications relative to future thermoelectric water use. A bounding analysis is performed using past greenhouse gas emission policy proposals and assumes either all effected capacity retires (lower water use bound) or is retrofitted (upper bound). The analysis is performed in the context of recent trends in electric power generation expansion, namely high penetration of natural gas and renewables along with constrained cooling system options. Results indicate thermoelectric freshwater withdrawals nationwide could increase by roughly 1% or decrease by up to 60% relative to 2009 levels, while consumption could increase as much as 21% or decrease as much as 28%. To identify where changes in freshwater use might be problematic at a regional level, electric power production has been mapped onto watersheds with limited water availability (where consumption exceeds 70% of gauged streamflow). Results suggest that between 0.44 and 0.96 Mm(3)/d of new thermoelectric freshwater consumption could occur in watersheds with limited water availability, while power plant retirements in these watersheds could yield 0.90 to 1.0 Mm(3)/d of water savings.

  • 出版日期2013-8-6