摘要

Mode density is very relevant for harmonic gyrotron cavity. Theoretical investigations suggest that quasi-optical confocal waveguide performs low mode density and good mode-selective character. By selecting the appropriate mode and optimizing the cavity parameters, the quasi-optical confocal cavity is suitable for high-harmonic terahertz gyrotron without mode competition. In order to verify the theoretical analysis, a 0.4-THz second harmonic gyrotron has been designed and experimented. Driven by a 40-kV, 4.75-A electron beam and 7.51-T magnetic field, the gyrotron prototype could generate 6.44 kW of output power at 395.35 GHz, which corresponds to an electron efficiency of 3.4%. There is no mode competition between the second harmonic and fundamental observed in the experiments.