摘要

Large electric superconducting machines are being sought to solve emissions challenges in aircraft and provide a solution to >12 MW wind turbine electricity generation. Superconducting motors with only high temperature superconducting (HTS) armatures can offer advantages of high reliability, high power density, and high efficiency compared with conventional superconducting motors. In this paper, a novel HTS squirrel-cage induction motor is proposed for high speed operation, which adopts the structure of HTS windings with a certain inclination angle in the stator slots. Due to the limitation of curvature radius of superconducting tapes, the pitch of HTS windings can be only set to 1 and adopt the short pitch arrangement structure, which such design details of the HTS motor would ensure the superconducting coils can undertake larger current and reduce AC losses. In order to keep the HTS windings in superconducting state and larger current density, a special fixed cryogenic cooling system below 70 K with the method of gas extraction and decompression, which is made of aramid fiber, has been fabricated and the whole structure of the stator is placed in liquid nitrogen. According to the motor control principles and electromagnetic field theory, the electrical performances of the novel designed stator-HTS motor, which driven by the variable-voltage variable-frequency (VVVF) inverter, are analyzed including the flux density distributions, the torque, the induced electromotive force, losses and efficiency by using the finite element method. Finally, the components of HTS squirrel-cage induction motor have been manufactured according to the designed parameters. Next step, the motor will be assembled and tested.