摘要

A scheme that probabilistically realizes hierarchical quantum state sharing of an arbitrary unknown qubit state with a four-qubit non-maximally entangled vertical bar chi > state is presented in this paper. In the scheme, the sender Alice distributes a quantum secret with a Bell-state measurement and publishes her measurement outcomes via a classical channel to three agents who are divided into two grades. One agent is in the upper grade, while the other two agents are in the lower grade. Then by introducing an ancillary qubit, the agent of the upper grade only needs the assistance of any one of the other two agents for probabilistically obtaining the secret, while an agent of the lower grade needs the help of both the other two agents by using a controlled-NOT operation and a proper positive operator-valued measurement instead of the usual projective measurement. In other words, the agents of two different grades have different authorities to reconstruct Alice's secret in a probabilistic manner. The scheme can also be modified to implement the threshold-controlled teleportation.