摘要

BACKGROUND AND PURPOSE ATP, UTP and UDP act at smooth muscle P2X and P2Y receptors to constrict rat intrapulmonary arteries, but the underlying signalling pathways are poorly understood. Here, we determined the roles of the Ca2+-dependent chloride ion current (ICl,Ca), Cav1.2 ion channels and Ca2+ influx. EXPERIMENTAL APPROACH Isometric tension was recorded from endothelium-denuded rat intrapulmonary artery rings (i.d. 200-500 mu m) mounted on a wire myograph. KEY RESULTS The ICl,Ca blockers, niflumic acid and 4,4%26apos;-diisothiocyanatostilbene-2,2%26apos;-disulfonic acid and the Cav1.2 channel blocker, nifedipine, reduced peak amplitude of contractions evoked by UTP and UDP by similar to 45-50% and in a non-additive manner. Ca2+-free buffer inhibited responses by similar to 70%. Niflumic acid and nifedipine similarly depressed contractions to ATP, but Ca2+-free buffer almost abolished the response. After peaking, contractions to UTP and UDP decayed slowly by 50-70% to a sustained plateau, which was rapidly inhibited by niflumic acid and nifedipine. Contractions to ATP, however, reversed rapidly and fully. Tannic acid contracted tissues per se and potentiated nucleotide-evoked contractions. CONCLUSIONS AND IMPLICATIONS I Cl,Ca and Ca2+ influx via Cav1.2 ion channels contribute substantially and equally to contractions of rat intrapulmonary arteries evoked by UTP and UDP, via P2Y receptors. ATP also activates these mechanisms via P2Y receptors, but the greater dependence on extracellular Ca2+ most likely reflects additional influx through the P2X1 receptor pore. The lack of a sustained response to ATP is probably due to it acting at P2 receptor subtypes that desensitize rapidly. Thus multiple signalling mechanisms contribute to pulmonary artery vasoconstriction mediated by P2 receptors.

  • 出版日期2012-6