摘要

In the first paper of this series, we introduced a global topology model for the study of magnetic clouds (MCs), fitting it to the experimental magnetic field components and obtaining, for example, the orientation of the axis of the MCs in the interplanetary medium. In the third paper, we extended the model to include theoretical hydrostatic plasma pressure, also incorporating it in the fitting procedure. The present work is complementary to the previous ones, now incorporating the proton current density as deduced from the continuity equation. In particular, we are interested in the component of the proton current density parallel to the magnetic field lines of the MC, j parallel to, because the perpendicular component is expected to have information similar to the plasma pressure. Under all of these conditions, our fitting procedure now involves simultaneous analysis of the three components of the magnetic field, the trace of the plasma pressure, and the parallel proton current density. This provides us with more information about the physical mechanisms taking place inside MCs, thus helping us to understand the propagation and evolution of these structures in the interplanetary medium.

  • 出版日期2016-5-20