摘要

The aortic wall is always loaded in vivo, which makes it challenging to estimate the material parameters of its nonlinear, anisotropic constitutive equation from in vivo image data. Previous approaches largely relied on either computationally expensive finite element models or simplifications of the geometry or material models. In this study, we investigated a new inverse method based on aortic wall stress computation. This approach consists of the following two steps: (1) computing an "almost true" stress field from the in vivo geometries and loading conditions, (2) building an objective function based on the "almost true" stress fields, constitutive equations and deformation relations, and estimating the material parameters by minimizing the objective function. The method was validated through numerical experiments by using the in vivo data from four ascending aortic aneurysm (AsAA) patients. The results demonstrated that the method is computationally efficient. This novel approach may facilitate the personalized biomechanical analysis of aortic tissues in clinical applications, such as in the rupture risk analysis of ascending aortic aneurysms.

  • 出版日期2017-8