摘要

Nonlinear characteristic fault detection and diagnosismethod based on higher-order statistical (HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model (ISM) and HOS is proposed: (1) the adjacency matrix is determined by partial correlation coefficient; (2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram; (3) interpretative structural for large-scale process control system is built by this ISM method; and (4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.