摘要

This paper proposes a new type of negative dislocated seal (NDS) based on the dislocated bearing theory to investigate the influential parameters of static rotor eccentricity and dislocated ratio on the static and rotordynamic characteristics of an example seal solved with computational fluid dynamics (CFD) the flow field. The rotordynamic characteristics of the NDS were investigated in respect of the effects of rotor whirling frequency on response force, stiffness coefficients, damping coefficients and rotor system stability, by multifrequency elliptical orbit rotor whirling model. Based on the studies, we reached the following conclusions. The circumferential pressure distribution of NDS and conventional labyrinth seal (LS) presents sine periodic variation approximately, while relative to the LS, the NDS has two divergent wedge gaps and reduces the hydrodynamic pressure effects, then the circumferential pressure difference and tangential force on rotor surface decreases by about 40 %similar to 190 %. The leakage of the NDS linearly increases with the rising eccentricity ratio and dislocation ratio approximately, and is larger (about 0.9 %similar to 1.5 %) than the LS. The direct stiffness coefficients of the two seals increase with the rise of rotor whirling frequency, while the absolute values of both the cross-coupled stiffness coefficients and the damping coefficients decrease with raising rotor whirling frequency. Compared with the LS, the NDS has smaller (about 28.8 %similar to 206.2 %) cross-coupled stiffness coefficient, larger (about 26.15 %similar to Z60.39 %) effective damping coefficient, and good stability of rotor system. This study has developed a novel seal structure to improve the seal performance of turbomachinery such as aeroengine.