摘要

The damage mechanisms active in silicon-molybdenum cast irons, namely EN-GJS-SiMo5-1 and SiMo1000, under thermo-mechanical fatigue and combined thermo-mechanical and high-cycle fatigue conditions have been investigated. The studied load conditions are those experienced at critical locations in exhaust manifolds of heavy-vehicle diesel engines, namely a temperature cycle of 300-750 degrees C with varied total mechanical and high-cycle fatigue strain ranges. It is established that oxide intrusions are formed in the early life from which macroscopic fatigue cracks are initiated close to the end-of-life. However, when high-cycle fatigue loading is superimposed, small cracks are preferentially initiated at graphite nodules within the bulk. In addition, it is found that both the oxidation growth rate and casting defects located near the surface affect the intrusion growth.

  • 出版日期2017-6