摘要

Formability of magnesium alloys at room temperature or slightly elevated temperatures is low, and exhibiting poor resistance to strain localization and failure. However, it is possible to improve the formability of AZ31 magnesium alloy sheet at high strain rate such as by electromagnetic forming (or magnetic pulse forming). In this study, experimental investigation of uniaxial tension of AZ31 sheet by magnetic pulse forming at room temperature was presented. The approximate rectangular flat spiral coil was employed to carry out the experiments. The specimens used in the tension test by magnetic pulse forming were same as the quasi-static uniaxial test. The samples were placed close to the outside of coil where an approximately homogenous magnetic field distribution prevailed. The experimental results indicate that the total elongation of AZ31 sheet improves about 37% compared with the quasi-static case. Non-uniform deformation occurs in the specimen. The maximum strain takes place on the area C, where is plotted on the specimen. The major and minor principal strains at most increase by approximately 112 and 96% under 5.12 kJ energy. The experimental results obtained in this study provide the fundamentals for the investigation of high speed forming of AZ31 magnesium alloy sheets.