摘要

The depth tracking issue of underactuated autonomous underwater vehicle (AUV) in vertical plane is addressed in this paper. Considering the complicated dynamics and kinematics model for underactuated AUV, a more simplified model is obtained based on assumptions. Then a nonlinear disturbance observer (NDO) is presented to estimate the external disturbance acting on AUV, and an adaptive terminal sliding mode control (ATSMC) based on NDO is applied to enhance the depth tracking performance of underactuated AUV considering both internal and external disturbance. Compared with the traditional sliding mode controller, the static error and chattering problem of the depth tracking process have been clearly improved by adopting NDO-based ATSMC. The stability of control system is proven to be guaranteed according to Lyapunov theory. In the end, simulation results imply that the proposed controller owns strong robustness and satisfied control effectiveness in comparison with the traditional controller.