摘要

A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was applied for the advanced treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under the optimized conditions (current density of 500 A/m(2), circulation rate of 5 mL/min, AC dosage of 50 g, and chloride concentration of 1.0 g/L), the average removal efficiencies of chemical oxygen demand (CODcr), NH3-N, total organic carbon (TOC), and ultraviolet absorption at 254 nm (UV254) of the 3D-EC reactor were 64.5%, 60.8%, 46.4%, and 64.8%, respectively; while the corresponding effluent concentrations of CODcr, NH3-N, TOC, and UV254 were 76.6, 20.1, and 42.5 mg/L, and 0.08 Abs/cm, respectively. The effluent concentration of CODcr was less than 100 mg/L, which showed that the treated wastewater satisfied the demand of the integrated wastewater discharge standard (GB 8978-1996). The 3D-EC process remarkably improved the treatment efficiencies with synergistic effects for CODcr, NH3-N, TOC, and UV254 during the stable stage of 44.5%, 38.8%, 27.2%, and 10.9%, respectively, as compared with the sum of the efficiencies of a two-dimensional electrochemical oxidation (2D-EC) reactor and an AC adsorption process, which was ascribed to the numerousmicro-electrodes of AC in the 3D-EC reactor. Gas chromatography mass spectrometry (GC-MS) analysis revealed that electrochemical treatment did not generatemore toxic organics, and it was proved that the increase in acute biotoxicity was caused primarily by the production of free chlorine.