摘要

Quantum chemical calculations were performed for LiNH2-HMgX (X = H, F, Cl, Br, CH3, OH, and NH2) complexes to propose a new interaction mechanism between them. This theoretical survey showed that the complexes are stabilized through the combinative interaction of magnesium and lithium bonds. The binding energies are in the range of 63.2-66.5 kcal mol(-1), i.e., much larger than that of the lithium bond. Upon complexation, both Mg-H and Li-N bonds are lengthened. Substituents increase Mg-H bond elongation and at the same time decrease Li-N bond elongation. These cyclic complexes were characterized with the presence of a ring critical point and natural population analysis charges.