摘要

Travel surveys based on global positioning system (GPS) data have exponentially increased over the past decades. Trip characteristics, including trip ends, travel modes, and trip purposes need to be detected from GPS data. Compared with other trip characteristics, studies on trip purpose detection are limited. These studies struggle with three types of limitations, namely, data validation, classification approach-related issues, and result comparison under multiple scenarios. Therefore, we attempt to obtain full understanding and improve these three aspects when detecting trip purposes in the current study. First, a smartphone-based travel survey is employed to collect GPS data, and a surveyor intervened prompted recall survey is used to validate trip characteristics automatically detected from the GPS data. Second, artificial neural networks combined with particle swarm optimization are used to detect trip purposes from the GPS data. Third, four scenarios are constructed by employing two methods for land-use type coding, i.e., polygon based information and point of interest, and two methods for selecting training dataset, i.e., equal proportion selection and equal number selection. The accuracy of trip purpose detection is then compared under these scenarios. The highest accuracies of 97.22% for the training dataset and 96.53% for the test dataset are achieved under the scenario of polygon-based information and equal proportion selection by comparing the detected and validated trip purposes. Promising results indicate that a smartphone-based travel survey can complement conventional travel surveys.