摘要

Polylactide (PLA)-montmorillonite (MMT) micro- and nanocomposites based on semicrystalline and amorphous polymers and unmodified or organomodified clays at 5 wt% content were produced by melt mixing. Based on the three different test methods that were used to follow thermal degradation, different conclusions were obtained. During melt processing, thermomechanical degradation was more pronounced in the presence of all fillers, which apparently acted catalytically, but to different degrees. During isothermal degradation in air from 180 degrees C to 200 degrees C, degradation rate constants were calculated from novel equations incorporating changes in intrinsic viscosity (IV). Results show that the thermal degradation rate constants of the amorphous PLA and its composites are lower than those of the semicrystalline PLA and its composites. Due to better filler dispersion in the polymer matrix, the thermal degradation rate constants of the nanocomposites are significantly lower than those of the unfilled polymers and their microcomposites under air. As per dynamic TGA data and thermal kinetic analysis from weight losses and activation energy calculations, organomodified nanofillers have a complex effect on the polymer thermal stability; the unmodified fillers, however, reduce polymer thermal stability. These TGA data and kinetic analysis results also support the findings that the thermal stability of the amorphous PLA and its composites is higher than that of the semicrystalline polymer and its composites and the thermal stability of the nanocomposites is higher than that of the microcomposites. In general, mathematical modeling based on random thermal scission equations was satisfactory for fitting the TGA experimental data.

  • 出版日期2009-3