摘要

The Eastern Tianshan Orogen (Xinjiang, NW China) in the Central Asian Orogenic Belt (CAOB) is featured by its many Carboniferous-Triassic mafic-ultramafic intrusions and associated magmatic Fe-Ti-V oxide mineralization. In this study, we present the first systematic data comparison on the age and whole-rock geochemistry of the ore-forming mafic-ultramafic complexes at Yaxi, Niumaoquan, Xiangshanxi, and Weiya. Our new age dating on the Yaxi complex indicates that the mineralized gabbro (zircon SHRIMP U-Pb dated 297.3 +/- 4.9 Ma) formed in the latest Carboniferous-Early Permian, similar to the diorite (LA-ICP-MS zircon U-Pb dated 308.3 +/- 8.6 Ma) and granodiorite (LA-ICP-MS zircon U-Pb dated 304.9 +/- 1.7 Ma). The Yaxi complex is the oldest late Palaeozoic mafic-ultramafic intrusion reported so far in the Eastern Tianshan. The mineralized gabbro at Yaxi contains higher average Fe2O3T (20.83 wt.%), TiO2 (5.91 wt.%), and V (523 ppm) contents than its ore-barren counterpart (7.45 wt.%, 0.99 wt.%, and 133 ppm, respectively). These Eastern Tianshan mafic rocks are mildly large ion lithophile element (LILE) enriched and high field-strength element (HFSE) depleted, and with LREE/HREE enrichment (Yaxi: (La/Yb)(N) = 2.7 similar to 5.37) and subtle positive Eu anomalies (Yaxi: Eu/Eu* = 0.94 to 3.31). This suggests that the Eastern Tianshan mafic-ultramafic magmas were likely derived from an arc/subduction-modified magma source. The E-W trending crustal-scale faults (e.g. the Aqikkuduk fault) may have acted as magma conduits and controlled the magma emplacement. The spatial-temporal distribution of the Eastern Tianshan Fe-Ti-V ore-forming mafic-ultramafic complexes and their petrologic and geochemical features suggest that the latest Carboniferous-Early Permian magmatic phase was likely emplaced in a collision-related compression setting following the Junggar Ocean closure, whereas the late Early Permian phase may have been related to a post-collisional orogenic setting.

  • 出版日期2019-5-3
  • 单位北京矿产地质研究院