摘要

Delayed selfing has been considered the best-of-both-worlds response to pollinator unpredictability because it can provide reproductive assurance without decreasing outcrossing potential. According to this hypothesis, selfing rates in delayed selfing species should be highly variable in fluctuating pollinator environments. To test this prediction, as well to explore the consequences of delayed selfing on genetic patterns, we compared two sister species that grow in the high Andes of Chile: Schizanthus grahamii that exhibits delayed selfing and Schizanthus hookeri, which is self-compatible but requires pollinators for seed set. We estimated genetic diversity within and among five populations of each species using six shared microsatellites. Our results indicated that selfing rates in S. grahamii (range 0.07-0.81) were significantly more variable than in S. hookeri (range 0-0.26). The highest levels of selfing were found in the populations of S. grahamii located at highest altitudes (r = 0.78) and at northern margin range, where pollinators are probably more scarce. These populations also showed the lowest allelic richness and heterozygosity values. Southern populations of S. grahamii had mixed mating, and showed heterozygosity and diversity values close to those detected for S. hookeri along all the sampled range. Selfing in this species results from geitonogamy, and did not covary with altitude. Schizanthus grahamii showed greater population differentiation than S. hookeri. Overall, our results indicated that selfing rates were widely variable in S. grahamii, with some populations predominantly selfing and others showing mixed mating. This pattern may be associated with the strong fluctuations in pollinator service that typically occur in the high Andes of Chile.

  • 出版日期2013-9