摘要

The two-sided assembly line balancing problem type-II (TALBP-II) is of major importance for the reconfiguration of the two-sided assembly lines which are widely utilized to assemble large-size high-volume products. The TALBP-II is NP-hard, and some assignment restrictions in real applications make this problem much more complex. This paper provides an integer programming model for solving the TALBP-II with assignment restrictions optimally and utilizes a simple and effective iterated greedy (IG) algorithm to address large-size problems. This algorithm utilizes a new local search by considering precedence relationships between tasks in order to reduce the computational time. In particular, a priority-based decoding scheme is developed to handle these assignment restrictions and reduce sequence-dependent idle times by adjusting the priority values. Experimental comparison among the proposed decoding scheme and other published ones demonstrates the efficiency of the priority-based decoding. A comprehensive computational comparison among the IG algorithm and other eight recent algorithms proves effectiveness of the proposed IG algorithm.