摘要

This paper describes loss of coolant accident (LOCA) analyses of the Supercritical-pressure Water-Cooled Fast Reactor (Super Fast Reactor). The features of the Super Fast Reactor are high power density and downward flow cooled fuel channels for the improvement of the economic potential of the Super Fast Reactor with high outlet steam temperature. The LOCA induces large pressure and coolant density change in the core. This change influences the flow distribution among the downward flow parallel channels. It will affect the safety of the Super Fast Reactor. LOCA analysis of Super Fast Reactor is important to understand the safety features of the Super Fast Reactor. Keeping the flow rate in the core is important for the safety of the Super Fast Reactor. In LOCA, it is difficult to maintain an adequate flow rate clue to the once-through coolant cycle and the downward flow cooled fuel assemblies. Therefore, the early actuation of the Automatic Depressurization System (ADS) and reduction of the maximum linear heat generation rates of the downward flow seed fuel assemblies and Low-Pressure Core Spray (LPCS) system are necessary for the Super Fast Reactor to cool the core under LOCA. Analysis results show that the Super Fast Reactor can satisfy the safety criteria with these systems.

  • 出版日期2011-10