(110)-Exposed Gold Nanocoral Electrode as Low Onset Potential Selective Glucose Sensor

作者:Cheng Ta Ming; Huang Ting Kai; Lin Huang Kai; Tung Sze Ping; Chen Yu Liang; Lee Chi Young; Chiu Hsin Tien*
来源:ACS Applied Materials & Interfaces, 2010, 2(10): 2773-2780.
DOI:10.1021/am100432a

摘要

A straightforward electrochemical deposition process was developed to grow gold nanostructures, including nanocoral, nanothorn, branched belt, and nanoparticle, on carbon electrodes by reducing HAuCl(4) under constant potentials in mixtures containing CTAC and/or NaNO(3). Among the nanostructures, the quasi-one-dimensional nanocoral electrode showed the highest surface area. Because of this, it provided excellent electrochemical performances in cyclic voltammetric (CV) studies for kinetic-controlled enzyme-free glucose oxidation reactions. In amperometric studies carried out at 0.200 V in PBS (pH 7.40, 0.100 M), the nanocoral electrode showed the highest anodic current response. It also offered the greatest sensitivity, 22.6 mu AmM(-1)cm(-2), an extended linear range, 5.00 x 10(-2) mM to 3.00 x 10(1) mM, and a low detection limit, 1.00 x 10(1) mu m among the electrodes investigated in this study. In addition, the glucose oxidation by the nanocoral electrode started at -0.280 V. more negative than the one of using a commercial Au electrode as the working electrode. This is attributed to the presence of exposed Au (110) surfaces on the electrode. The feature was applied to oxidize glucose selectively in the presence of ascorbic acid (AA) and uric acid (UA), common interferences found in physiological analytes. With an applied voltage at -0.100 V. the AA oxidation (started at -0.080 V) can be avoided while the glucose oxidation still provides a significant response.