摘要

Due to their contribution to gastrointestinal and pulmonary disease, their ability to produce various deadly exotoxins, and their resistance to extreme temperature, pressure, radiation, and common chemical disinfecting agents, bacterial endospores of the Firmicutes phylum are a major concern for public and environmental health. In addition, the hardy and dormant nature of endospores renders them a particularly significant threat to the integrity of robotic extraterrestrial life-detection investigations. To prevent the contamination of critical surfaces with seemingly ubiquitous bacterial endospores, clean rooms maintained at exceedingly stringent cleanliness levels (i.e., fewer than 100,000 airborne particles per ft(3)) are used for surgical procedures, pharmaceutical processing and packaging, and fabrication and assembly of medical devices and spacecraft components. However, numerous spore-forming bacterial species have been reported to withstand typical clean room bioreduction strategies (e.g., UV lights, maintained humidity, paucity of available nutrients), which highlights the need for rapid and reliable molecular methods for detecting, enumerating, and monitoring the incidence of viable endospores. Robust means of evaluating and tracking spore burden not only provide much needed information pertaining to endospore ecophysiology in different environmental niches but also empower decontamination and bioreduction strategies aimed at sustaining the reliability and integrity of clean room environments. An overview of recent molecular advances in detecting and enumerating viable endospores, as well as the expanding phylogenetic diversity of pathogenic and clean room-associated spore-forming bacteria, ensues.

  • 出版日期2013-9

全文