A strategy for the engineering of insulin producing cells with a broad spectrum of defense properties

作者:Bloch Konstantin*; Bloch Olga; Tarasenko Igor; Lazard Daniel; Rapoport Micha; Vardi Pnina
来源:Biomaterials, 2011, 32(7): 1816-1825.
DOI:10.1016/j.biomaterials.2010.11.018

摘要

Insulin-producing pancreatic beta cells are known to be extremely susceptible to the oxidative stress and hypoxia generated following islet transplantation in diabetic patients. We hereby present a novel in vivo selection strategy based on the isolation of insulin-producing cells with enhanced protection after repeated rounds of encapsulation and xenotransplantation. Rat insulinoma INS-1 cells were encapsulated in alginate macrobeads and transplanted in the peritoneal cavity of mice. After 2 days the beads were retrieved and cells were recovered from alginate and propagated in vitro until submitted to a second round of encapsulation and transplantation. Three days later, the surviving cells, named INS-1m2, were isolated from the alginate beads and their protection and functional activity examined. Compared to parental INS-1 cells, the selected INS-1m2 cells were more resistant to hydrogen peroxide, nitric oxide, alloxan and hypoxia. This enhanced protection of the selected cells correlated with the increased level of catalase and poly (ADP-ribose) polymerase expression. Although selected cells expressed more insulin than parental cells, no change in their insulin response to glucose was observed. We conclude that the in vivo selection strategy is a powerful tool for the engineering of insulin producing cells with a broad spectrum of defense properties.

  • 出版日期2011-3