摘要

For the sake of coordinating multiple energy sources appropriately from power demand and guarantee stage of charge (SOC) consensus of the energy storage systems in different operation conditions, a multisource coordination energy management strategy based on self-convergence droop control is proposed for a large-scale and high-power hybrid tramway. A hybrid powertrain configuration that includes multiple proton exchange membrane fuel cell systems, batteries, and supercapacitors is designed for a 100% low-floor light rail vehicle (LF-LRV) tramway. According to the hybrid system model of LF-LRV tramway developed with commercial equipment, this proposed multisource coordination energy management strategy is assessed with a real driving cycle of tramway. The results obtained from RT-LAB platform testify that the proposed strategy is capable of coordinating multiple energy sources, guaranteeing the SOC consensus and improving the efficiency of overall tramway.