A bio-inspired asynchronous skin system for crack detection applications

作者:Sharp Nathan*; Kuntz Alan; Brubaker Cole; Amos Stephanie; Gao Wei; Gupta Gautum; Mohite Aditya; Farrar Charles; Mascarenas David
来源:Smart Materials and Structures, 2014, 23(5): 055020.
DOI:10.1088/0964-1726/23/5/055020

摘要

In many applications of structural health monitoring (SHM) it is imperative or advantageous to have large sensor arrays in order to properly sense the state of health of the structure. Typically these sensor networks are implemented by placing a large number of sensors over a structure and running individual cables from each sensor back to a central measurement station. Data is then collected from each sensor on the network at a constant sampling rate regardless of the current timescales at which events are acting on the structure. These conventional SHM sensor networks have a number of shortfalls. They tend to have a large number of cables that can represent a single point of failure for each sensor as well as add significant weight and installation costs. The constant sampling rate associated with each sensor very quickly leads to large amounts of data that must be analyzed, stored, and possibly transmitted to a remote user. This leads to increased demands on power consumption, bandwidth, and size. It also taxes our current techniques for managing large amounts of data. For the last decade the goal of the SHM community has been to endow structures with the functionality of a biological nervous system. Despite this goal the community has predominantly ignored the biological nervous system as inspiration for building structural nervous systems, choosing instead to focus on experimental mechanics and simulation techniques. In this work we explore the use of a novel, bio-inspired, SHM skin. This skin makes use of distributed computing and asynchronous communication techniques to alleviate the scale of the data management challenge as well as reduce power. The system also periodically sends a 'heat beat' signal to provide state-of-health updates. This conductive skin was implemented using conductive ink resistors as well as with graphene-oxide capacitors.

  • 出版日期2014-5
  • 单位Los Alamos