摘要

Improvement to the immunogenicity of DNA vaccines was evaluated in a Mycobacterium tuberculosis (MTB) infection mouse model examining the combined effects of nonlytic Fc-fused IL-7 DNA (IL-7-nFc) and Flt3-ligand fused Mtb32 (F-Mtb32) DNA. Mice were treated with conventional chemotherapy for 6 weeks from 4 weeks after aerosol infection of MTB. Following the start of chemotherapy, DNA immunizations were administered five times with 2-week intervals. Coadministration of IL-7-nFc and F-Mtb32 DNA given during chemotherapy synergistically enhanced the magnitude of Mtb32-specific T cell responses and sustained for one-year after the last immunization assessed by IFN-gamma ELISPOT assay. After dexamethasone treatment, a significantly reduced MTB reactivation was observed in mice received both IL-7-nFc and F-Mtb32 DNA, compared with F-MTb32 DNA alone or with control mice. In addition, mice treated with IL-7-nFc and F-Mtb32 DNA together showed improved lung pathology and reduced pulmonary inflammation values relative to F-Mtb32 DNA or saline injected mice. Intracellular cytokine staining revealed that the protection levels induced by combination therapy with IL-7-nFc and F-Mtb32 DNA was associated with enhanced Mtb32-specific IFN-gamma secreting CD4(+) T cell responses and CD8(+) T cell responses stimulated with CTL epitope peptide in the lungs and spleens. These data suggest that IL-7-nFc as a novel TB adjuvant may facilitate therapeutic TB DNA vaccine to the clinics through significant enhancement of codelivered DNA vaccine-induced T cell immunity.

  • 出版日期2013-6-12