摘要

Detecting the oscillatory currents with a specific frequency distribution may have the potential to make neuronal current MRI (ncMRI) come true. The phase shift or dephasing induced by both positive and negative episodes of oscillatory neuronal currents is likely to be canceled out over the echo time in typical BOLD-contrast fMRI experiments. Based on the contrast of rotary saturation, both of the recently developed spin-locked oscillatory excitation (SLOE) and stimulus-induced rotary saturation (SIRS) pulse sequences have been demonstrated to be able to detect weak oscillatory magnetic fields in phantoms with 3 T MR scanners. In this report, through Bloch equation simulation as well as water phantom and anesthetic rats experiments, we comprehensively evaluate and compare the sensitivities of these two methods (SLOE and SIRS) in detecting the oscillatory magnetic fields for both high (100 Hz) and low (10 Hz) oscillation frequencies, while using their respective optimal imaging parameters. In agreement with the theoretical predications, both the simulated and experimental results showed that the SLOE method features a much higher detection sensitivity of weak magnetic fields than that of the SIRS method. SLOE was able to detect applied oscillatory magnetic fields as low as 0.1 nT in a water phantom and 0.5 nT in rat brains and the deteriorated noise levels in rat data may account for the reduced sensitivity in vivo. These promising results form the foundation for direct detection of in vivo neuronal currents using MRI.