摘要

This paper presents a methodology for constructing fragility functions to characterise slope stability under a range of catastrophic earthquakes and rainfalls. The procedures for creating fragility functions, including the first-order reliability method (FORM) and the copula-based sampling method (CBSM), are demonstrated using a selection of typical slopes. The most common failure modes are included, such as the shallow sliding of an infinite slope, circular slip surface of a homogeneous slope, and tetrahedral wedge failure in a rock slope. Owing to the proposed approach, the fragility function can be applied to quantify the failure probabilities over a range of loading conditions with ease, as these are attributed to a function, rather than a design point. The advantage of these definitions is that the uncertainties of correlated soil shear strengths can be incorporated into the reliability models. The established procedure can provide a basis for describing vulnerable behaviour of a slope under various loading conditions and geometries.