摘要

During summer of 2009, multi-channel marine seismic reflection data and wide-angle refraction data were acquired as part of the joint NSF and Taiwanese-funded TAIGER program with the goal of understanding the dynamics of arc-continent collision in Taiwan. One of the principle difficulties of crustal-scale imaging with marine reflection data such as these is the prevalent multiple contamination that obscures many of the deep crustal targets. Without effective treatment of multiples, many of the objectives of the TAIGER active source program may not be achieved. We present three profiles, one from each acquisition leg, that demonstrate the effectiveness of 2D surface-related multiple elimination (SRME) and radon filtering in attenuating much of this unwanted energy in broad ranges of water depths, seafloor topographies and lithologies. Two profiles from south of Taiwan image 3-4 km of sedimentary strata overlying moderately extended continental crust along the Eurasia continental shelf and a 5-6 km thick sedimentary section overlying thin crust consisting of faulted blocks and volcanic bodies along the continental slope. Our multiple attenuation efforts also reveal a seaward-dipping normal fault that penetrates into the upper mantle and separates thick crust of the continental shelf from thin crust of the continental slope. A profile from east of Taiwan reveals thin ocean crust of the Philippine Sea plate subducting beneath the Ryukyu trench that may be traced beneath the accretionary prism and Ryukyu forearc. These profiles demonstrate the success of our imaging strategy in the range of imaging environments spanned by the TAIGER marine reflection seismic data.

  • 出版日期2012-12