摘要

Recently, two-way relay networks have been regarded as a promising technique that can improve bandwidth utilization. In this paper, the power allocation problem for multiuser two-way relay networks with amplifyand- forward protocol is investigated. In order to describe the self-interestedness of nodes in two-way relay networks, a two-level Stackelberg game is introduced to jointly optimize the benefits of the source pair and the relay nodes, where the relay nodes are modeled as leaders and the source pair is modeled as a follower. To facilitate the power allocation process, a distributed game-theoretic power allocation algorithm is proposed. Then, the existence and optimization of the Stackelberg equilibrium for the proposed power allocation algorithm is proven. The convergence of the presented algorithm is also analyzed by proving that price update is a standard function. Simulation results indicate that the proposed power allocation algorithm can improve energy utilization by jointly optimizing the utilities of both source pair and relay nodes.

全文