摘要

To overcome the scale discontinuity of the Delayed Detached-eddy simulation (DDES) based on the v2-f Reynolds-averaged Navier-Stokes (RANS) model developed by Jee and Shariff (International Journal of Heat and Fluid Flow 46(2014) 84), an improvement is proposed in the present work. For the new DDES formulation, the scale discontinuity is avoided in the transition region and the RANS mode is correctly recovered for the shielded region. However, the numerical stability of the new DDES formulation is poor, and the relaxation factor in some locations is extremely large. To improve the numerical stability, the underlying v2-f RANS model is modified. Besides, a damping function is introduced to damp the RANS region when the grid resolution is fine enough and the flow is filled with an abundance of turbulence. Numerical simulations are carried out for some typical wall-bounded flows and special attention is paid to distinguish the effect of the damping function to the resolution capability of the flowfields.