摘要

We revisit calculations of nebular hydrogen Lya and He II lambda 1640 line strengths for Population III (Pop III) galaxies, undergoing continuous, and bursts of, star formation. We focus on initial mass functions (IMFs) motivated by recent theoretical studies, which generally span a lower range of stellar masses than earlier works. We also account for case-B departures and the stochastic sampling of the IMF. In agreement with previous work, we find that departures from case-B can enhance the Lya flux by a factor of a few, but we argue that this enhancement is driven mainly by collisional excitation and ionization, and not due to photoionization from the n = 2 state of atomic hydrogen. The increased sensitivity of the Lya flux to the high-energy end of the galaxy spectrum makes it more subject to stochastic sampling of the IMF. The latter introduces a dispersion in the predicted nebular line fluxes around the deterministic value by as much as a factor of similar to 4. In contrast, the stochastic sampling of the IMF has less impact on the emerging Lyman Werner photon flux. When case-B departures and stochasticity effects are combined, nebular line emission from Pop III galaxies can be up to one order of magnitude brighter than predicted by "standard" calculations that do not include these effects. This enhances the prospects for detection with future facilities such as the James Webb Space Telescope and large, ground-based telescopes.

  • 出版日期2016-12-10