AmbLOXe-An Epidermal Lipoxygenase of the Mexican Axolotl in the Context of Amphibian Regeneration and Its Impact on Human Wound Closure In Vitro

作者:Menger Bjoern*; Vogt Peter M; Allmeling Christina; Radtke Christine; Kuhbier Joern W; Reimers Kerstin
来源:Annals of Surgery, 2011, 253(2): 410-418.
DOI:10.1097/SLA.0b013e318207f39c

摘要

Objective: The Mexican axolotl (Ambystoma mexicanum) is a well-characterized example for intrinsic regeneration. As lipoxygenase signaling is of crucial importance to scarless mammalian wound healing, we postulated that lipoxygenases might be expressed during amphibian regeneration and they might also influence human cells under appropriate conditions. In this study we identified an amphibian lipoxygenase and evaluated its impact on human cells in an in vitro wound model.
Methods: cDNA encoding for amphibian epidermal lipoxygenase (AmbLOXe) was polymerase chain reaction amplified and sequenced followed by phylogenic classification based on T-coffee alignment. Distribution of AmbLOXe was examined in various Ambystoma tissues, using polymerase chain reaction and in situ hybridization. Lipoxgenase influence was investigated using an outgrowth model of amphibian epidermal cells. Human osteosarcoma, as well as keratinocyte cell lines expressing AmbLOXe were tested concerning in vitro wound closure in a monolayer scratch model.
Results: We isolated AmbLOXe from Ambystoma limb bud blastema identified as a homologue of human epidermal lipoxygenase. Amphibian epidermal lipoxygenase is expressed in Axolotl limb blastema and in epidermal cells which show decreased cell migration and proliferation rates when treated with LOX inhibitors. Furthermore, human osteosarcoma and keratinocyte cells showed increased rates of cell migration if transfected with AmbLOXe.
Conclusion: In this study, AmbLOXe, a new effector of amphibian regeneration is described. In consideration of the presented data, AmbLOXe is important for amphibian epidermal cell proliferation and migration. As AmbLOXe expressing human osteosarcoma and keratinocyte cell lines showed increased rates of in vitro wound closure, an influence of amphibian mediators on human cells could be described for the first time.

  • 出版日期2011-2