摘要

We first describe a wave-function based formalism of polarizable charge model by starting from the Hartree product ansatz for the total wave function and making the second-order expansion of individual molecular energies with the use of partial charge operators. The resulting model is shown to be formally equivalent to the charge response kernel model that starts from the linear-response approximation to partial charges, and also closely related to a family of fluctuating charge models that are based on the electronegativity equalization principle. We then apply the above model to a systematic comparison of polarization effects on qualitatively different liquids, namely, protic solvents (water and methanol), an aprotic polar solvent (acetonitrile), and imidazolium-based ionic liquids. Electronic polarization is known to decelerate molecular motions in conventional solvents while it accelerates them in ionic liquids. To obtain more insights into these phenomena, we consider an effective decomposition of total polarization energy into molecular contributions, and show that their statistical distribution is well-correlated with the acceleration/deceleration of molecular motions. In addition, we perform effective nonpolarizable simulations based on mean polarized charges, and compare them with fully polarizable simulations. The result shows that the former can reproduce structural properties of conventional solvents rather accurately, while they fail qualitatively to reproduce acceleration of molecular motions in ionic liquids.

  • 出版日期2010-1-28