Distribution of Nanoparticles near a Major US and Canada Trade Bridge: Comparison of Simulations with Field Data

作者:Nazridoust Kambiz; Ahmadi Goodarz; Liu Chaosheng; Ferro Andrea R; McAuley Timothy R; Jaques Peter A; Hopke Philip K*
来源:Aerosol and Air Quality Research, 2013, 13(1): 3-12.
DOI:10.4209/aaqr.2011.01.0004

摘要

Dispersion of ultrafine particles arising from traffic emissions on a major international bridge (the Peace Bridge) between U.S. and Canada was studied during the summer of 2004. A computational model for evaluating the transport and dispersion of vehicular emissions from the Peace Bridge Complex (PBC) into the downwind neighborhood was developed to improve the estimation of ultrafine particle number concentrations in this area of Buffalo, New York. An unstructured computational grid of the Peace Bridge and its vicinity was generated, and the mean airflow was simulated using the standard k-epsilon turbulence model in the FLUENT (TM) code (ANSYS, Inc, Canonsburg, PA). A Discrete Random Walk (DRW) model was used to simulate the instantaneous turbulence fluctuating velocity. A Lagrangian particle-tracking model was used to simulate the transport and dispersion of particles from the motor vehicles on the bridge and in the Peace Bridge Plaza area. The particle transport model accounts for the drag and Brownian forces acting on the particle, as well as the gravitational sedimentation effects. These results were compared with a series of particle size distribution measurements made over the region of interest. For particulate emissions measured in the size range of 16 to 166 nm, the simulated size-fractionated particle concentrations show agreement with the field measurements with estimated errors of approximately 15%. These results suggest that CFD modeling could provide the basis for reasonable estimates of the exposure from specific major roads in the downwind area.

  • 出版日期2013-2

全文