An electrochemically reversible DNA switch

作者:Won Byoung Yeon; Jung Cheulhee; Park Ki Soo; Park Hyun Gyu*
来源:Electrochemistry Communications, 2013, 27: 100-103.
DOI:10.1016/j.elecom.2012.11.011

摘要

We have developed a novel strategy for regulating G-quadruplex formation of a DNA sequence that relies on electrochemical reduction of Pb2+ and oxidation of Pb. The DNA aptamer sequence (PW17) forms a G-quadruplex structure through interaction with Pb2+. The electrochemical reduction of Pb2+ to Pb, which accumulates on the electrode surface, brings about destruction of the G-quadruplex structure. Subsequently by applying oxidation voltage, Pb on the electrode surface goes back to Pb2+ and released Pb2+ binds again to the non-structured free PW17 sequence resulting in reformation of the G-quadruplex structure. In this manner, a PW17 DNA sequence can be reversibly switched between a very stable G-quadruplex state and a non-structured state. The results should provide insight into the development of novel mechanical DNA nanomachines that are driven by simple electrochemical processes.

  • 出版日期2013-2