摘要

Diseases of hermatypic corals pose a global threat to coral reefs, and investigations of bacterial communities associated with healthy corals and those exhibiting signs of disease are necessary for proper diagnosis. One disease, commonly called white plague (WP), is characterized by acute tissue loss. This investigation compared the bacterial communities associated with healthy coral tissue (N = 15), apparently healthy tissue on WP-diseased colonies (N = 15), and WP-diseased tissues (N = 15) from Montastraea annularis (species complex) colonies inhabiting a Bahamian reef. Aliquots of sediment (N = 15) and water (N = 15) were also obtained from the proximity of each coral colony sampled. Samples for culture-dependent analyses were inoculated onto one-half strength Marine Agar (A1/2 MA) and Thiosulfate Citrate Bile Salts Sucrose Agar to quantify the culturable communities. Length heterogeneity PCR (LH-PCR) of the 16S rRNA gene characterized the bacterial operational taxonomic units (OTU) associated with lesions on corals exhibiting signs of a white plague-like disease as well as apparently healthy tissue from diseased and non-diseased conspecifics. Analysis of Similarity was conducted on the LH-PCR fingerprints, which indicated no significant difference in the composition of bacterial communities associated with apparently healthy and diseased corals. Comparisons of the 16S rRNA gene amplicons from cultured bacterial colonies (A1/2 MA; N = 21) with all amplicons obtained from the whole coral-associated bacterial community indicated a parts per thousand yen39 % of coral-associated bacterial taxa could be cultured. Amplicons from these bacterial cultures matched amplicons from the whole coral-associated bacterial community that, when combined, accounted for %26gt; 70 % total bacterial abundance. An OTU with the same amplicon length as Aurantimonas coralicida (313.1 bp), the reported etiological agent of WPII, was detected in relatively low abundance (%26lt; 0.1 %) on all tissue types. These findings suggest a coral disease resembling WP may result from multiple etiologies.

  • 出版日期2013-6