摘要

This paper complements Part 1 in which cloud processes of aggregated convection are examined in a large-domain radiative convective equilibrium simulation in order to uncover those responsible for a consistently observed, abrupt increase in mean precipitation at a column relative humidity value of approximately 77%. In Part 2, the focus is on how the transition is affected independently by total moisture above and below the base of the melting layer. When mean precipitation rates are examined as simultaneous functions of these two moisture layers, four distinct behaviors are observed. These four behaviors suggest unique, yet familiar, physical regimes in which (i) little rain is produced by infrequent clouds, (ii) shallow convection produces increasing warm rain with increasing low-level moisture, (iii) deep convection produces progressively heavier rain above the transition point with increasing total moisture, and (iv) deep stratiform cloud produces increasingly intense precipitation from melting for increasing upper level moisture. The independent thresholds separating regimes in upper and lower layer humidity are shown to result in the value of total column humidity at which a transition between clear air and deep convection, and therefore a pickup in precipitation, is possible. All four regimes force atmospheric columns toward the pickup value at 77% column humidity, but each does so through a unique set of physical processes. Layer moisture and microphysical budgets are analyzed and contrasted with column budgets.

  • 出版日期2017-6-27