摘要

Interior ballistics analysis is required for the development of the gun system. Interior ballistics is a complex phenomenon containing the propellant combustion and gas flow and is completed in tens of milliseconds during gun firing. Thus, some data cannot be directly measured by experiment. Numerical analysis is therefore traditionally used to understand the complex gun firing phenomena. In previous studies, the two-dimensional axisymmetric numerical method for interior ballistics using the Eulerian-Lagrangian approach has been developed. There are some limits in depicting the actual phenomena with two-dimensional models. Therefore, a three-dimensional numerical model has been built in the present study. Unlike the conventional method, the calculation has been conducted by separating the physical phenomena into the combustion part and the flow part for simplicity and efficiency. The internal flow in the gun barrel has been calculated by using the STAR-CCM+ and the source terms produced by the propellant combustion has been computed by utilizing the existing code. The developed numerical model has been compared with the AGARD gun results and the simulation of 40 mm gun firings. The reliability of the developed model has been confirmed because the results of the numerical analysis greatly agree with the simulation results. The basis of the three-dimensional analysis of the interior ballistics has been formed through this study.

  • 出版日期2016-4