摘要

Estimates of population density and abundance change (differences in density or encounter rates across land uses or time periods) form the cornerstone of much of our knowledge of species' responses to environmental conditions, extinction risks and potential conservation actions. Gathering baseline data on abundance of the world's c. 10 000 bird species and monitoring trends in the light of rapidly changing environmental and harvest pressures is a daunting prospect. With this in mind, we review literature on population densities and abundance changes across habitats in one of the world's largest and most threatened bird families, the parrots (Psittaciformes), to identify gaps in knowledge, model phylogenetic and other influences on abundance, and seek patterns that might guide thinking for data-deficient taxa and situations. Density estimates were found for only 25% of 356 parrot species. Abundance change data were similarly limited and most came from logged forest, with very few comparisons across different anthropogenic habitats. Threatened species were no more likely to have a density estimate than non-threatened species, and were less likely to have estimates of abundance change. Exploratory generalized linear mixed models indicated that densities are most influenced by genus, and are generally higher within protected areas than outside. It is unclear whether the latter effect stems from habitat protection, a reduction in poaching or both, but protected areas appear to be beneficial for parrots. Individual members of the parakeet' genera (e.g. Pyrrhura and Eos) were predictably abundant, whereas within larger-bodied genera such as Ara (macaws), species were predictably uncommon (<10 individuals per km(2)) and there was a long tail of extreme rarity. Responses of parrots to habitat change were highly variable, with natural variation in parrot abundance across different primary forests as great as that between primary forest and human-altered forests. The speed at which environmental change is affecting the world's parrots far outstrips that of our current capacity to track their abundance and we assess the likely scale of data deficiency in this and other bird groups. Developments in survey and analysis methods such as variants of distance sampling and the integration of niche modelling with point density estimation may increase our effectiveness in monitoring parrots and other important and threatened bird groups.

  • 出版日期2015-4