摘要

A Peano continuum means a locally connected continuum. A compact metric space is called a Peano compactum if all its components are Peano continua and if for any constant C > 0 all but finitely many of its components are of diameter less than C. Given a compact set K subset of C, there usually exist several upper semi-continuous decompositions of K into subcontinua such that the quotient space, equipped with the quotient topology, is a Peano compactum. We prove that one of these decompositions is finer than all the others and call it the core decomposition of K with Peano quotient. This core decomposition gives rise to a metrizable quotient space, called the Peano model of K, which is shown to be determined by the topology of K and hence independent of the embedding of K into C. We also construct a concrete continuum K subset of R-3 such that the core decomposition of K with Peano quotient does not exist. For specific choices of K subset of C, the above mentioned core decomposition coincides with two models obtained recently, namely the locally connected model for unshielded planar continua (like connected Julia sets of polynomials) and the finitely Suslinian model for unshielded planar compact sets (like polynomial Julia sets that may not be connected). The study of such a core decomposition provides partial answers to several questions posed by Curry in 2010. These questions are motivated by other works, including