摘要

An improved microfluidic chip-based sequential-injection trapped-droplet array liquid-liquid extraction system with chemiluminescence (CL) detection was developed in this work. Two recess arrays were fabricated on both sides of the extraction channel to produce droplet arrays of organic extractant. A chip integrated monolithic probe was fabricated at the inlet of the extraction channel on the glass chip instead of the capillary probe connected to the microchannel, in order to improve the system stability and reliability. A slotted-vial array system coupled with the monolithic probe was used to sequentially introduce sample and different solvents and reagents into the extraction channel for extraction and CL detection. The performance of the system was demonstrated in the determination of Al3+ using Al3+-dihydroxyazobenzene (DHAB) and tributyl phosphate (TBP) extraction system. The operation conditions, including extraction time, concentration and flow rate of the CL reagents, were optimized. Within one analysis cycle of 12 min, an enrichment factor of 85 was obtained in the extraction stage with a sample consumption of 1.8 mu L. The consumption of CL reagent, bis(2-carbopentyloxy-3,5,6-trichlorophenyl)oxalate (CPPO), was 120 nL/cycle. The detection limit of the system for Al3+ was 1.6 x 10(-6) mol/L with a precision of 4.5% (R.S.D., n =6).