摘要

Sotolon and the heterocyclic acetals of glycerol are known as potential aging and oxidation markers in fortified wines such as Madeira, Port, and Sherry. Thus, determining the evolution of these compounds under different oxidative aging conditions is important for fortified wine quality purposes. This study proposes a new methodology based on a miniaturized emulsification extraction followed by GC-MS/SIM, which was developed and optimized to follow the formation of sotolon and heterocyclic acetals in fortified wines that were submitted to traditional accelerated aging and micro-oxygenation. The optimization was achieved by means of a mixed-level factorial design, considering 3 factors: sample volume, extractant volume, and concentrated extract volume, by performing 19 experiments in duplicate. The extraction was optimized using 8 mL of wine sample, 5 mL of dichloromethane, concentrating the extract up to 10-fold. The method performance was evaluated for sotolon, using a matrix-matched calibration between 10 and 2000 mu g/L. The selectivity was confirmed through the analysis of real samples. The methodology showed good linearity (R-2 = 0.999), high sensitivity (LOQ = 6.8 mu g/L), recovery about 105%, and good precision (less than 8 and 9%, evaluated by the variation of intra- and inter-day measurements, respectively). This is the first methodology that revealed to be an excellent tool to simultaneously follow the formation of sotolon and heterocyclic acetals in Madeira wines, using an inexpensive, simple, efficient, and effective experimental layout. Indeed, it was shown that traditional accelerated aging and micro-oxygenation have impact on the formation of such molecules.

  • 出版日期2018-8

全文