摘要

Energy harvesting from human motion faces the challenges of low frequency and random excitation. One strategy that has been successful in the past is frequency up-conversion. This paper introduces an inertial device that combines this principle, in the form of piezoelectric beam plucking through magnetic coupling with a rotating proof mass. The advantages rotational systems can have for body movements are discussed. The prototype is described and tested in a real world environment during a running race and later on in a laboratory environment on a custom built linear excitation table. Throughout these tests it is confirmed that such a device can operate over a broad range of frequencies and under varying orientations, making it suitable for this intended application. Across frequencies between 0.5 and 4 Hz and accelerations between 1 and 20 m/s(2) power outputs in the range of tens of microwatts were achieved, with a peak value of 43 mu W at 2 Hz and 20 m/s(2) when the rotor went into a continuous rotation.

  • 出版日期2014-2-1