摘要

Objective: To evaluate the renal ischemia reperfusion injury (IRI) in rabbits using the ultrasonic contrast technique and discuss the clinical value of ultrasonic contrast technique in the diagnosis of renal IRI by comparing the time-intensity curve of renal cortex and the expression of vascular endothelial growth factor (VEGF) of renal tissue. Methods: Twenty 3-month-old New Zealand rabbits were randomly divided into 4 groups, namely Ctrl group, IRI-12 h, IRI-24 h and IRI-48 h groups. The two dimensional gray-scale ultrasonography was employed to determine and mark the position of rabbit kidney. Rabbits were given the intraperitoneal anesthesia with 20% urethane with the dosage of 5 mL/kg. The aseptic operation was performed after the local skin disinfection in the area of both kidneys. The right kidney of animals in the control group was excised without any treatment for the left kidney. After excising the right kidney of animals in groups of IRI-12 h, IRI-24 h and IRI-48 h, the aneurysm clip was used to clip the renal pedicle vessel of left kidney, in order to simulate the ischemia. Because of the tissue ischemia, it could be seen that the color of kidney was changed from bright red to dark red, which indicated the successful modeling of ischemia. The aneurysm clip was released after one hour of maintaining the ischemia. Then the kidney turned out to be bright red from dark red, which indicated that the reperfusion was completed. Taking this moment as the time of ischermia reperfusion, the wound was stitched up. A total of 12, 24 and 36 h after the operation, the two-dimensional and color Doppler flow imaging and ultrasonic contrast were employed for the examination. The dynamic changes of ultrasonic contrast were recorded. The quantitative analysis software (QontraXt) was adopted to analyze the time-intensity curve of echo at different positions of renal cortex. After the ultrasonic contrast testing, rabbits were put to death. The renal cortex tissue was isolated and the tissue RNA and total protein were extracted respectively. Real-time PCR and western blotting were used to detect the VEGF and the Pearson product moment correlation coefficient was used to measure the linear relationship between these two variables. Results: The ultrasonic contrast could clearly reflect the process of IRI. The results of testing at mRNA and protein level indicated that the expression of VEGF in IRI groups was significantly increased (P<0.05) and the expression of VEGF was also increased by the time of reperfusion. Conclusions: There is the certain correlation between the expression of VEGF and process of IRI. The correlation coefficient between the ultrasonic contrast parameters of AT and TTP and the relative expression of VEGF is over 0.9, which indicates the relatively high correlation. But there is no significant difference in the change of perfusion peak intensity between groups, which has no correlation with the expression of VEGF.