Assessing the impact of electrolyte conductivity and viscosity on the reactor cost and pressure drop of redox-active polymer flow batteries

作者:Iyer Vinay A; Schuh Jonathon K; Montoto Elena C; Nemani V Pavan; Qian Shaoyi; Nagarjuna Gavvalapalli; Rodriguez Lopez Joaquin; Ewoldt Randy H; Smith Kyle C*
来源:Journal of Power Sources, 2017, 361: 334-344.
DOI:10.1016/j.jpowsour.2017.06.052

摘要

Redox-active small molecules, used traditionally in redox flow batteries (RFBs), are susceptible to crossover and require expensive ion exchange membranes (IEMs) to achieve long lifetimes. Redox-active polymer (RAP) solutions show promise as candidate electrolytes to mitigate crossover through size exclusion, enabling the use of porous separators instead of IEMs. Here, poly(vinylbenzyl ethyl viologen) is studied as a surrogate RAP for RFBs. For oxidized RAPs, ionic conductivity varies weakly between 1.6 and 2.1 S m(-1) for RAP concentrations of 0.13-1.27 mol kg(-1) (monomeric repeat unit per kg solvent) and 0.32 mol kg(-1) LiBF4 with a minor increase upon reduction. In contrast, viscosity varies between 1.8 and 184.0 mPa s over the same concentration range with weakly shear-thinning rheology independent of oxidation state. Techno-economic analysis is used to quantify reactor cost as a function of electrolyte transport properties for RAP concentrations of 0.13-1.27 mol kg(-1), assuming a hypothetical 3V cell and facile kinetics. Among these concentrations, reactor cost is minimized over a current density range of 600-1000 A m(-2) with minimum reactor cost between $11-17 per kWh, and pumping pressures below 10 kPa. The predicted low reactor cost of RAP RFBs is enabled by sustained ionic mobility in spite of the high viscosity of concentrated RAP solutions.

  • 出版日期2017-9-1