摘要

Mitochondrial DNA (mtDNA) variation has been suggested as a possible cause of variation in male fertility because sperm activity is tightly coupled to mitochondrial oxidative phosphorylation and ATP production, both of which are sensitive to mtDNA mutations. Since male-specific phenotypes such as sperm have no fitness consequences for mitochondria due to maternal mitochondrial (and mtDNA) inheritance, mtDNA mutations that are deleterious in males but which have negligible or no fitness effect in females can persist in populations. How often such mutations arise and persist is virtually unknown. To test whether there were associations between mtDNA variation and sperm performance, we haplotyped 250 zebra finches Taeniopygia guttata from a large pedigreed-population and measured sperm velocity using computer-assisted sperm analysis. Using quantitative genetic 'animal' models, we found no effect of mtDNA haplotype on sperm velocity. Therefore, there is no evidence that in this system mitochondrial mutations have asymmetric fitness effects on males and females, leading to genetic variation in male fertility that is blind to natural selection.

  • 出版日期2010-2